IURA: An Improved User-based Collaborative Filtering Method Based on Innovators
نویسندگان
چکیده
User based collaborative filtering (UserCF) is a method that generates recommendations based on the preferences and past actions of like-minded users. Currently, most UserCF based recommendation systems do not consider the users’ purchase precedence and activeness when locating those like-minded users. Yet, these two factors contain valuable information that can contribute to recommendation accuracy and diversity. First, according to the Diffusion of Innovations Theory (DIT), the earlier that a like-minded user purchased an item, the more likely that he would be a trend leader in his respective area of interest. Such users are called the innovators, and they should have higher level of influence on their followers than a typical like-minded user. Second, innovators are typically more active and more adventurous users. They are the ones who are more willing to try out new products of various genres, and would therefore contribute the diversity of the recommendation. Based on these reasons, we propose in this paper an improved UserCF mechanism based on innovators instead of simply likeminded users. The proposed method is simple to implement, and also applicable even in the cases where item release time is not available. Extensive experiments were conducted to evaluate the proposed mechanism using various metrics and the results were encouraging: our proposed scheme not only achieved the best results in term of accuracy, but also performed well in terms of diversity (including intra-list and aggregate diversity) as well.
منابع مشابه
A New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation
Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...
متن کاملیک سامانه توصیهگر ترکیبی با استفاده از اعتماد و خوشهبندی دوجهته بهمنظور افزایش کارایی پالایشگروهی
In the present era, the amount of information grows exponentially. So, finding the required information among the mass of information has become a major challenge. The success of e-commerce systems and online business transactions depend greatly on the effective design of products recommender mechanism. Providing high quality recommendations is important for e-commerce systems to assist users i...
متن کاملA NOVEL FUZZY-BASED SIMILARITY MEASURE FOR COLLABORATIVE FILTERING TO ALLEVIATE THE SPARSITY PROBLEM
Memory-based collaborative filtering is the most popular approach to build recommender systems. Despite its success in many applications, it still suffers from several major limitations, including data sparsity. Sparse data affect the quality of the user similarity measurement and consequently the quality of the recommender system. In this paper, we propose a novel user similarity measure based...
متن کاملUse of Semantic Similarity and Web Usage Mining to Alleviate the Drawbacks of User-Based Collaborative Filtering Recommender Systems
One of the most famous methods for recommendation is user-based Collaborative Filtering (CF). This system compares active user’s items rating with historical rating records of other users to find similar users and recommending items which seems interesting to these similar users and have not been rated by the active user. As a way of computing recommendations, the ultimate goal of the user-ba...
متن کاملIntelligent Approach for Attracting Churning Customers in Banking Industry Based on Collaborative Filtering
During the last years, increased competition among banks has caused many developments in banking experiences and technology, while leading to even more churning customers due to their desire of having the best services. Therefore, it is an extremely significant issue for the banks to identify churning customers and attract them to the banking system again. In order to tackle this issue, this pa...
متن کامل